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Analytical solution to Matthews’ and Blakeslee’s critical
dislocation formation thickness of epitaxially grown thin films
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Abstract

For the first time, an analytical expression for the critical thickness for the onset of misfit dislocations as established

by Matthews and Blakeslee is presented. It is the so-called Lambert W function which reflects the curvature of this

critical thickness. With the arrive of the analytical solution, expressions of arbitrary complexity that involve the critical

thickness can be handled much more easily. Its practical application is demonstrated by implementation of Vegard’s

rule. r 2002 Published by Elsevier Science B.V.
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1. Introduction

About 25 years ago, Matthews and Blakeslee [1]
introduced a model for the onset of misfit
dislocations in thin films, when epitaxially grown
on single crystal substrates. This model is based on
thermodynamic assumptions and represents an
elasticity theory approach.

Despite the fact that experimental data often
deviate from predictions made by the model, the
majority of researchers appreciates this model,
probably due to its simplicity and conceptual
transparency. Since then, their article has been
cited almost 2000 times [2], which gives a clear
indication about the importance of their pioneer-
ing work. However, the model was deficient
insofar as it did not provide an explicit expression
for the critical film thickness dc; but an implicit one
of the type:

dc ¼ A lnðBdcÞ; ð1Þ
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where A and B represent material constants.
Although Eq. (1) is very easy to solve by an
iterative numerical method, this is not necessary;
the exact solution of Matthews’ and Blakeslee’s
equation is given by the so-called Lambert W

function [3].
The transcendental W-function was postulated

by the 18th century scientist Lambert [3], a
colleague of mathematician Leonhard Euler, to
solve the equation

W ðkÞ exp W ðkÞ ¼ k: ð2Þ

The W-function allows for the explicit solution of
entire classes of differential equations, which to
date only could be solved numerically, and is
experiencing today a renaissance in various fields
of science and engineering [3,4], not least in the
modeling of thin film growth [5,6].

2. Results

In many cases, when a thin film is epitaxially
grown on a planar substrate, the film material
adopts the crystal lattice of the substrate. When
the bulk structures of the film material and the
substrate have different crystal lattices, the film
will grow strained in order to match the lattice
structure of the substrate, while a misfit stress is
built up in the film. At a specific film thickness,
stress will be partially released by the generation of
energetically more favourable dislocations. Thus,
the system is governed by the force balance
between film stress and the tension of dislocations,
which can be considered as two competing species.
The equation for this specific film thickness, as
obtained by Matthews’ and Blakeslee’s analysis, is
given by

dc ¼
b

4pf0 sin y cos l
1� n cos2 y

1þ n

� �
ln a

dc

b

� �
; ð3Þ

with b being the length of the Burgers vector, n the
Poisson ratio, f0 the lattice misfit, and y and l are
the angles which define the orientation of the
dislocation relative to the lattice. The dislocation
core parameter a is usually fitted to experimentally
obtained data and may have values typically
between 1 and 4.

For further calculation, we introduce the
abbreviations

A ¼
b

4pf0 sin y cos l
1� n cos2 y

1þ n

� �
ð4Þ

B ¼
a
b

ð5Þ

and then obtain Eq. (1).
Using the transformation dc-u ¼ Bdc and the

abbreviation �1=AB ¼ k; we obtain the simple
implicit equation

ku þ ln u ¼ 0: ð6Þ

We begin to solve Eq. (6) using the Ansatz

u ¼
1

k
W ðkÞ: ð7Þ

Inserting Eq. (7) into Eq. (6) yields

W ðkÞ þ ln
1

k
W ðkÞ

� �
¼ 0: ð8Þ

Rearranging Eq. (8) and employing an exponential
in Eq. (10)

W ðkÞ � ln k þ ln W ðkÞ ¼ 0; ð9Þ

expðW ðkÞ � ln k þ ln W ðkÞÞ ¼ 1; ð10Þ

exp W ðkÞW ðkÞ ¼ k ð11Þ

we find that Eq. (11) represents the definition of
the Lambert W-function, as already established in
Eq. (2).
Therefore, our Ansatz in Eq. (7) is justified.
The exact solution for the critical film thickness

is after resubstitution for k

dc ¼ �AW �
1

AB

� �
ð12Þ

and, after resubstitution for A and B:

dc ¼
�b

4pf0 sin y cos l
1� n cos2 y

1þ n

� W
�4pf0 sin y cos l

a
1þ n

1� ncos2y

� �
: ð13Þ

Lambert’s W-function is a complex and multi-
valued function with an infinite number of
branches, only two of them having real values. If
x is real, then for �1=epxo0 there are two
possible real values of W ðxÞ; as displayed in Fig. 1.
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The branch satisfying �1pW ðxÞ is denoted
W0ðxÞ and referred to as the principal branch in
the literature; the branch satisfying W ðxÞp� 1 is
denoted W�1ðxÞ [3].
We mention that the W-function can be

differentiated

W 0ðxÞ ¼
W ðxÞ

xð1þ W ðxÞÞ
¼

e�W ðxÞ

1þ W ðxÞ
ð14Þ

and also integratedZ
W ðxÞdx ¼ x W ðxÞ � 1þ

1

W ðxÞ

� �

¼ ðW ðxÞ2 � W ðxÞ þ 1ÞeW ðxÞ: ð15Þ

For practical applications, as we have in mind
here, we have to recall that there are two possible
values of W ðxÞ for �1=epxo0: To find the
branch of W ðxÞ that correctly describes the
evolution of the critical thickness additional
plausible considerations are required.
The argument of the W-function as well as the

prefactor have always the same sign, either
negative or positive. Therefore, the critical thick-
ness dc becomes always positive as expected. We
identify W�1ðxÞ (Fig. 1) as the branch that
correctly describes the evolution of the critical
thickness as a function of the lattice misfit f0;
because a misfit f0 ¼ 0; that is, x ¼ 0; must
correspond to dc ¼ N (and not dc ¼ 0). An
increasing misfit must cause a decreasing critical
thickness.

We demonstrate how the W-function is applied
to obtain an explicit expression for the critical
thickness as a function of the composition of the
substrate:
Consider the critical thickness of nickel thin

films as a function of the misfit, as it occurs when
growing it on a single crystal made from a binary
alloy such as CuxAuð1�xÞ; its surface being indexed
as (0 0 1). Thus, the critical thickness can be
expressed as a function of the concentration of
copper. The lattice parameter a of CuxAuð1�xÞ is
obtained by Vegard’s rule [8], while we neglect that
for some systems and some compositions this rule
might not hold

a ¼ aCux þ aAuð1� xÞ ð16Þ

with aCu ¼ 3:615 (A and aAu ¼ 4:078 (A. The lattice
misfit f in the copper film is defined as

f ¼
a � aNi

aNi
; ð17Þ

where aNi being the lattice parameter of nickel,
3.5238 (A.
Eqs. (16) and (17) can be inserted in Eq. (13)

accordingly. For further calculation we take for
the Poisson ratio of nickel n ¼ 153

400
; for the Burger’s

vector aNi=2[1 1 1], for the dislocation core a ¼ 3;
and we assume 601 dislocations so that y ¼
p=2; l ¼ 0: The result is displayed in Fig. 2, which
shows the critical thickness of nickel grown on a
copper/gold single crystal, as a function of the
concentration of copper.
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Fig. 1. The real valued Lambert W-function with branches W0

and W�1:
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Fig. 2. Critical thickness for the onset of misfit dislocations in

nickel as a function of copper content x in the substrate.
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The case x ¼ 1 represents the pure copper
substrate with a lattice constant of 3.615 (A, which
allows for the smallest lattice misfit of 2.59% and
thus for the largest critical thickness of about 20 (A.
With decreasing x; the gold content in the

substrate increases, and so does the lattice para-
meter, after Vegard’s rule. Consequently, the
lattice misfit increases to about 15%, and the
critical thickness decreases to about 2.8 (A.

3. Conclusions

Eq. (13) represents an expression for the critical
film thickness as of Matthews’ and Blakeslee’s
definition in an exact and algebraic closed and
explicit form. By reformulating the equation in W

form we take advantage of the whole theory of the
W-function, which might be useful for under-
standing of the solution.
Within the framework of the concept of exactly

solvable growth models [4–6], the present case can
be considered as the competition of two species,
that is, the misfit stress in the film versus the
tension of the dislocation. The balance of the two
forces finds its manifestation in the occurrence of
the critical thickness.
Though the new representation of the critical

thickness does not provide any new physics of the
underlying principles, it enhances the transparency
of the system particularly for cases where the
evolution of the critical film thicknesses is con-
sidered as a function of variables, such as the
lattice misfit f :
The new expression for the critical film thick-

nesses requires knowledge about the Lambert
W-function.
One might argue that it is possible to present an

explicit solution for any implicit equation, once
one has defined an appropriate novel function.

However, in the case of the Lambert W-
function, there exists a fast and simple computer
algorithm [9] to compute this function to arbitrary
accuracy, as for other known transcendental
functions like sin, exp, and so on. This algorithm
is based on Halley’s iteration, which converges
faster than Newton’s method. It is also more
reliable because it takes asymptotic behaviour into
account, which guarantees higher accuracy for
very small and very large arguments. Also, various
mathematical computer programs such as Maple
and Mathematical have already implemented this
function. Additionally, by reformulating our
problem in terms of W, a large body of available
theory immediately becomes applicable to this
problem.
The closed form of dc can be easily implemented

in other symbolic relations, for instance in
magnetoelasticity [7] or in works which employ
the epitaxial Bain path [7], but also for modeling
work on semiconductor heterostructures.
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